3.511 \(\int \frac{1}{(a+b \sec (c+d x))^3} \, dx\)

Optimal. Leaf size=173 \[ -\frac{b \left (-5 a^2 b^2+6 a^4+2 b^4\right ) \tanh ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a^3 d (a-b)^{5/2} (a+b)^{5/2}}+\frac{b^2 \left (5 a^2-2 b^2\right ) \tan (c+d x)}{2 a^2 d \left (a^2-b^2\right )^2 (a+b \sec (c+d x))}+\frac{b^2 \tan (c+d x)}{2 a d \left (a^2-b^2\right ) (a+b \sec (c+d x))^2}+\frac{x}{a^3} \]

[Out]

x/a^3 - (b*(6*a^4 - 5*a^2*b^2 + 2*b^4)*ArcTanh[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(a^3*(a - b)^(5/2)
*(a + b)^(5/2)*d) + (b^2*Tan[c + d*x])/(2*a*(a^2 - b^2)*d*(a + b*Sec[c + d*x])^2) + (b^2*(5*a^2 - 2*b^2)*Tan[c
 + d*x])/(2*a^2*(a^2 - b^2)^2*d*(a + b*Sec[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.309837, antiderivative size = 173, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 12, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.5, Rules used = {3785, 4060, 3919, 3831, 2659, 208} \[ -\frac{b \left (-5 a^2 b^2+6 a^4+2 b^4\right ) \tanh ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a^3 d (a-b)^{5/2} (a+b)^{5/2}}+\frac{b^2 \left (5 a^2-2 b^2\right ) \tan (c+d x)}{2 a^2 d \left (a^2-b^2\right )^2 (a+b \sec (c+d x))}+\frac{b^2 \tan (c+d x)}{2 a d \left (a^2-b^2\right ) (a+b \sec (c+d x))^2}+\frac{x}{a^3} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Sec[c + d*x])^(-3),x]

[Out]

x/a^3 - (b*(6*a^4 - 5*a^2*b^2 + 2*b^4)*ArcTanh[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(a^3*(a - b)^(5/2)
*(a + b)^(5/2)*d) + (b^2*Tan[c + d*x])/(2*a*(a^2 - b^2)*d*(a + b*Sec[c + d*x])^2) + (b^2*(5*a^2 - 2*b^2)*Tan[c
 + d*x])/(2*a^2*(a^2 - b^2)^2*d*(a + b*Sec[c + d*x]))

Rule 3785

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Simp[(b^2*Cot[c + d*x]*(a + b*Csc[c + d*x])^(n +
 1))/(a*d*(n + 1)*(a^2 - b^2)), x] + Dist[1/(a*(n + 1)*(a^2 - b^2)), Int[(a + b*Csc[c + d*x])^(n + 1)*Simp[(a^
2 - b^2)*(n + 1) - a*b*(n + 1)*Csc[c + d*x] + b^2*(n + 2)*Csc[c + d*x]^2, x], x], x] /; FreeQ[{a, b, c, d}, x]
 && NeQ[a^2 - b^2, 0] && LtQ[n, -1] && IntegerQ[2*n]

Rule 4060

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) +
 (a_))^(m_), x_Symbol] :> Simp[((A*b^2 - a*b*B + a^2*C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1))/(a*f*(m + 1
)*(a^2 - b^2)), x] + Dist[1/(a*(m + 1)*(a^2 - b^2)), Int[(a + b*Csc[e + f*x])^(m + 1)*Simp[A*(a^2 - b^2)*(m +
1) - a*(A*b - a*B + b*C)*(m + 1)*Csc[e + f*x] + (A*b^2 - a*b*B + a^2*C)*(m + 2)*Csc[e + f*x]^2, x], x], x] /;
FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1]

Rule 3919

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[(c*x)/a,
x] - Dist[(b*c - a*d)/a, Int[Csc[e + f*x]/(a + b*Csc[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[
b*c - a*d, 0]

Rule 3831

Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[1/b, Int[1/(1 + (a*Sin[e
 + f*x])/b), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{(a+b \sec (c+d x))^3} \, dx &=\frac{b^2 \tan (c+d x)}{2 a \left (a^2-b^2\right ) d (a+b \sec (c+d x))^2}-\frac{\int \frac{-2 \left (a^2-b^2\right )+2 a b \sec (c+d x)-b^2 \sec ^2(c+d x)}{(a+b \sec (c+d x))^2} \, dx}{2 a \left (a^2-b^2\right )}\\ &=\frac{b^2 \tan (c+d x)}{2 a \left (a^2-b^2\right ) d (a+b \sec (c+d x))^2}+\frac{b^2 \left (5 a^2-2 b^2\right ) \tan (c+d x)}{2 a^2 \left (a^2-b^2\right )^2 d (a+b \sec (c+d x))}+\frac{\int \frac{2 \left (a^2-b^2\right )^2-a b \left (4 a^2-b^2\right ) \sec (c+d x)}{a+b \sec (c+d x)} \, dx}{2 a^2 \left (a^2-b^2\right )^2}\\ &=\frac{x}{a^3}+\frac{b^2 \tan (c+d x)}{2 a \left (a^2-b^2\right ) d (a+b \sec (c+d x))^2}+\frac{b^2 \left (5 a^2-2 b^2\right ) \tan (c+d x)}{2 a^2 \left (a^2-b^2\right )^2 d (a+b \sec (c+d x))}-\frac{\left (b \left (6 a^4-5 a^2 b^2+2 b^4\right )\right ) \int \frac{\sec (c+d x)}{a+b \sec (c+d x)} \, dx}{2 a^3 \left (a^2-b^2\right )^2}\\ &=\frac{x}{a^3}+\frac{b^2 \tan (c+d x)}{2 a \left (a^2-b^2\right ) d (a+b \sec (c+d x))^2}+\frac{b^2 \left (5 a^2-2 b^2\right ) \tan (c+d x)}{2 a^2 \left (a^2-b^2\right )^2 d (a+b \sec (c+d x))}-\frac{\left (6 a^4-5 a^2 b^2+2 b^4\right ) \int \frac{1}{1+\frac{a \cos (c+d x)}{b}} \, dx}{2 a^3 \left (a^2-b^2\right )^2}\\ &=\frac{x}{a^3}+\frac{b^2 \tan (c+d x)}{2 a \left (a^2-b^2\right ) d (a+b \sec (c+d x))^2}+\frac{b^2 \left (5 a^2-2 b^2\right ) \tan (c+d x)}{2 a^2 \left (a^2-b^2\right )^2 d (a+b \sec (c+d x))}-\frac{\left (6 a^4-5 a^2 b^2+2 b^4\right ) \operatorname{Subst}\left (\int \frac{1}{1+\frac{a}{b}+\left (1-\frac{a}{b}\right ) x^2} \, dx,x,\tan \left (\frac{1}{2} (c+d x)\right )\right )}{a^3 \left (a^2-b^2\right )^2 d}\\ &=\frac{x}{a^3}-\frac{b \left (6 a^4-5 a^2 b^2+2 b^4\right ) \tanh ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a^3 (a-b)^{5/2} (a+b)^{5/2} d}+\frac{b^2 \tan (c+d x)}{2 a \left (a^2-b^2\right ) d (a+b \sec (c+d x))^2}+\frac{b^2 \left (5 a^2-2 b^2\right ) \tan (c+d x)}{2 a^2 \left (a^2-b^2\right )^2 d (a+b \sec (c+d x))}\\ \end{align*}

Mathematica [A]  time = 0.760963, size = 205, normalized size = 1.18 \[ \frac{\sec ^3(c+d x) (a \cos (c+d x)+b) \left (\frac{3 a b^2 \left (2 a^2-b^2\right ) \sin (c+d x) (a \cos (c+d x)+b)}{(a-b)^2 (a+b)^2}+\frac{2 b \left (-5 a^2 b^2+6 a^4+2 b^4\right ) (a \cos (c+d x)+b)^2 \tanh ^{-1}\left (\frac{(b-a) \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a^2-b^2}}\right )}{\left (a^2-b^2\right )^{5/2}}+\frac{a b^3 \sin (c+d x)}{(b-a) (a+b)}+2 (c+d x) (a \cos (c+d x)+b)^2\right )}{2 a^3 d (a+b \sec (c+d x))^3} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Sec[c + d*x])^(-3),x]

[Out]

((b + a*Cos[c + d*x])*Sec[c + d*x]^3*(2*(c + d*x)*(b + a*Cos[c + d*x])^2 + (2*b*(6*a^4 - 5*a^2*b^2 + 2*b^4)*Ar
cTanh[((-a + b)*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]]*(b + a*Cos[c + d*x])^2)/(a^2 - b^2)^(5/2) + (a*b^3*Sin[c +
d*x])/((-a + b)*(a + b)) + (3*a*b^2*(2*a^2 - b^2)*(b + a*Cos[c + d*x])*Sin[c + d*x])/((a - b)^2*(a + b)^2)))/(
2*a^3*d*(a + b*Sec[c + d*x])^3)

________________________________________________________________________________________

Maple [B]  time = 0.07, size = 664, normalized size = 3.8 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b*sec(d*x+c))^3,x)

[Out]

2/d/a^3*arctan(tan(1/2*d*x+1/2*c))-6/d*b^2/(tan(1/2*d*x+1/2*c)^2*a-tan(1/2*d*x+1/2*c)^2*b-a-b)^2/(a-b)/(a^2+2*
a*b+b^2)*tan(1/2*d*x+1/2*c)^3-1/d/a*b^3/(tan(1/2*d*x+1/2*c)^2*a-tan(1/2*d*x+1/2*c)^2*b-a-b)^2/(a-b)/(a^2+2*a*b
+b^2)*tan(1/2*d*x+1/2*c)^3+2/d/a^2*b^4/(tan(1/2*d*x+1/2*c)^2*a-tan(1/2*d*x+1/2*c)^2*b-a-b)^2/(a-b)/(a^2+2*a*b+
b^2)*tan(1/2*d*x+1/2*c)^3+6/d*b^2/(tan(1/2*d*x+1/2*c)^2*a-tan(1/2*d*x+1/2*c)^2*b-a-b)^2/(a+b)/(a^2-2*a*b+b^2)*
tan(1/2*d*x+1/2*c)-1/d/a*b^3/(tan(1/2*d*x+1/2*c)^2*a-tan(1/2*d*x+1/2*c)^2*b-a-b)^2/(a+b)/(a^2-2*a*b+b^2)*tan(1
/2*d*x+1/2*c)-2/d/a^2*b^4/(tan(1/2*d*x+1/2*c)^2*a-tan(1/2*d*x+1/2*c)^2*b-a-b)^2/(a+b)/(a^2-2*a*b+b^2)*tan(1/2*
d*x+1/2*c)-6/d*a*b/(a^4-2*a^2*b^2+b^4)/((a+b)*(a-b))^(1/2)*arctanh((a-b)*tan(1/2*d*x+1/2*c)/((a+b)*(a-b))^(1/2
))+5/d/a*b^3/(a^4-2*a^2*b^2+b^4)/((a+b)*(a-b))^(1/2)*arctanh((a-b)*tan(1/2*d*x+1/2*c)/((a+b)*(a-b))^(1/2))-2/d
/a^3*b^5/(a^4-2*a^2*b^2+b^4)/((a+b)*(a-b))^(1/2)*arctanh((a-b)*tan(1/2*d*x+1/2*c)/((a+b)*(a-b))^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sec(d*x+c))^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.13457, size = 1960, normalized size = 11.33 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sec(d*x+c))^3,x, algorithm="fricas")

[Out]

[1/4*(4*(a^8 - 3*a^6*b^2 + 3*a^4*b^4 - a^2*b^6)*d*x*cos(d*x + c)^2 + 8*(a^7*b - 3*a^5*b^3 + 3*a^3*b^5 - a*b^7)
*d*x*cos(d*x + c) + 4*(a^6*b^2 - 3*a^4*b^4 + 3*a^2*b^6 - b^8)*d*x + (6*a^4*b^3 - 5*a^2*b^5 + 2*b^7 + (6*a^6*b
- 5*a^4*b^3 + 2*a^2*b^5)*cos(d*x + c)^2 + 2*(6*a^5*b^2 - 5*a^3*b^4 + 2*a*b^6)*cos(d*x + c))*sqrt(a^2 - b^2)*lo
g((2*a*b*cos(d*x + c) - (a^2 - 2*b^2)*cos(d*x + c)^2 - 2*sqrt(a^2 - b^2)*(b*cos(d*x + c) + a)*sin(d*x + c) + 2
*a^2 - b^2)/(a^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + b^2)) + 2*(5*a^5*b^3 - 7*a^3*b^5 + 2*a*b^7 + 3*(2*a^6*b
^2 - 3*a^4*b^4 + a^2*b^6)*cos(d*x + c))*sin(d*x + c))/((a^11 - 3*a^9*b^2 + 3*a^7*b^4 - a^5*b^6)*d*cos(d*x + c)
^2 + 2*(a^10*b - 3*a^8*b^3 + 3*a^6*b^5 - a^4*b^7)*d*cos(d*x + c) + (a^9*b^2 - 3*a^7*b^4 + 3*a^5*b^6 - a^3*b^8)
*d), 1/2*(2*(a^8 - 3*a^6*b^2 + 3*a^4*b^4 - a^2*b^6)*d*x*cos(d*x + c)^2 + 4*(a^7*b - 3*a^5*b^3 + 3*a^3*b^5 - a*
b^7)*d*x*cos(d*x + c) + 2*(a^6*b^2 - 3*a^4*b^4 + 3*a^2*b^6 - b^8)*d*x - (6*a^4*b^3 - 5*a^2*b^5 + 2*b^7 + (6*a^
6*b - 5*a^4*b^3 + 2*a^2*b^5)*cos(d*x + c)^2 + 2*(6*a^5*b^2 - 5*a^3*b^4 + 2*a*b^6)*cos(d*x + c))*sqrt(-a^2 + b^
2)*arctan(-sqrt(-a^2 + b^2)*(b*cos(d*x + c) + a)/((a^2 - b^2)*sin(d*x + c))) + (5*a^5*b^3 - 7*a^3*b^5 + 2*a*b^
7 + 3*(2*a^6*b^2 - 3*a^4*b^4 + a^2*b^6)*cos(d*x + c))*sin(d*x + c))/((a^11 - 3*a^9*b^2 + 3*a^7*b^4 - a^5*b^6)*
d*cos(d*x + c)^2 + 2*(a^10*b - 3*a^8*b^3 + 3*a^6*b^5 - a^4*b^7)*d*cos(d*x + c) + (a^9*b^2 - 3*a^7*b^4 + 3*a^5*
b^6 - a^3*b^8)*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (a + b \sec{\left (c + d x \right )}\right )^{3}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sec(d*x+c))**3,x)

[Out]

Integral((a + b*sec(c + d*x))**(-3), x)

________________________________________________________________________________________

Giac [B]  time = 1.29495, size = 435, normalized size = 2.51 \begin{align*} \frac{\frac{{\left (6 \, a^{4} b - 5 \, a^{2} b^{3} + 2 \, b^{5}\right )}{\left (\pi \left \lfloor \frac{d x + c}{2 \, \pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (2 \, a - 2 \, b\right ) + \arctan \left (\frac{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{\sqrt{-a^{2} + b^{2}}}\right )\right )}}{{\left (a^{7} - 2 \, a^{5} b^{2} + a^{3} b^{4}\right )} \sqrt{-a^{2} + b^{2}}} - \frac{6 \, a^{3} b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 5 \, a^{2} b^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 3 \, a b^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 2 \, b^{5} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 6 \, a^{3} b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 5 \, a^{2} b^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 3 \, a b^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 2 \, b^{5} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{{\left (a^{6} - 2 \, a^{4} b^{2} + a^{2} b^{4}\right )}{\left (a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - a - b\right )}^{2}} + \frac{d x + c}{a^{3}}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sec(d*x+c))^3,x, algorithm="giac")

[Out]

((6*a^4*b - 5*a^2*b^3 + 2*b^5)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(2*a - 2*b) + arctan((a*tan(1/2*d*x + 1/2*
c) - b*tan(1/2*d*x + 1/2*c))/sqrt(-a^2 + b^2)))/((a^7 - 2*a^5*b^2 + a^3*b^4)*sqrt(-a^2 + b^2)) - (6*a^3*b^2*ta
n(1/2*d*x + 1/2*c)^3 - 5*a^2*b^3*tan(1/2*d*x + 1/2*c)^3 - 3*a*b^4*tan(1/2*d*x + 1/2*c)^3 + 2*b^5*tan(1/2*d*x +
 1/2*c)^3 - 6*a^3*b^2*tan(1/2*d*x + 1/2*c) - 5*a^2*b^3*tan(1/2*d*x + 1/2*c) + 3*a*b^4*tan(1/2*d*x + 1/2*c) + 2
*b^5*tan(1/2*d*x + 1/2*c))/((a^6 - 2*a^4*b^2 + a^2*b^4)*(a*tan(1/2*d*x + 1/2*c)^2 - b*tan(1/2*d*x + 1/2*c)^2 -
 a - b)^2) + (d*x + c)/a^3)/d